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ABSTRACT 
 

QUANTIFYING DIFFERENCES IN OTOLITH CHEMISTRY OF CHINOOK SALMON IN LAKE MICHIGAN 
TO DETERMINE NATAL ORIGINS 

 
By 

 
Alexander C Maguffee 

 
 Previous research has indicated that a substantial amount of hatchery-reared Chinook 

salmon (Oncorhynchus tshawytscha) migrate from Lake Huron to Lake Michigan, likely due to 

greater foraging opportunities in Lake Michigan, indicating the potential for wild Chinook 

salmon to exhibit similar movement patterns. Thus, an increased priority has been placed on 

quantifying the movement of wild Chinook salmon from Lake Huron to Lake Michigan. The goal 

of this research was to determine the feasibility of quantifying inter-basin movement of wild 

Chinook salmon using otolith microchemistry techniques. Chinook salmon otolith pairs were 

extracted from juvenile and adult fish collected in 2015 and 2016 from tributaries in six 

predefined regions. Otoliths were analyzed using Laser Ablation Inductively Coupled Plasma 

Mass Spectrometry (LA ICP MS) to determine trace metal concentrations, and various 

multivariate classification algorithms were evaluated for accuracy of classification. Juvenile data 

reclassified to their natal regions with classification success at a basin level comparable to 

previous Great Lakes otolith studies. Applying the juvenile-fit models to the adult data resulted 

in moderate success at a basin level. MANOVAs indicated significant differences in otolith 

microchemistry between juvenile year classes, and these differences negatively affected 

classification accuracy. These findings suggest that otolith microchemistry can be used to 

estimate wild Chinook salmon inter-basin movement, and that classification accuracy will be 

much higher if the model is developed from the same year class as the assessment sample.
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INTRODUCTION 

 

 Chinook salmon (Oncorhynchus tshawytscha) were introduced to the Laurentian Great 

Lakes in the late 1960s with intentions of establishing a sport fishery and controlling invasive 

alewife (Alosa pseudoharengus) (Kocik & Jones 1999). Previous attempts to introduce Pacific 

salmonids to the region in the late 1800s failed to produce a sustainable recreational fishery 

(Tody & Tanner 1966, Emery 1985, Parsons 1973). Since these attempts, the Great Lakes have 

experienced several major ecosystem changes, driven primarily by introductions of non-native 

species (Mills et al. 1993), which allowed for the eventual successful introduction of Chinook 

salmon. Until the mid-1900s, the native lake trout (Salvelinus namaycush) was the dominant 

predator species in the Great Lakes (Smith 1968, Hansen and Holey 2002). Due to predation by 

invasive sea lamprey (Petromyzon marinus), in combination with substantial fishing pressure 

from the commercial fishery, lake trout populations collapsed in the mid-1900s (Smith 1968, 

Hansen and Holey 2002). In the absence of the lakes’ top predator, populations of invasive 

alewife drastically increased (Smith 1970, O’Gorman and Stewart 1999). Alewife dominated the 

fish biomass of the Great Lakes in the 1960s, and experienced large spring die-offs that caused 

the fouling of beaches (Mills et al. 1993, Brown 1968, Brown 1972). Recognizing the need for a 

return of predatory species, and the potential for successful non-native salmonid introduction, 

Great Lakes managers stocked Chinook salmon into Lake Michigan in 1967 and Lake Huron in 

1968 (Kocik and Jones 1999, Tody and Tanner 1966, Emery 1985). These introductions were 

highly successful due to the large biomass of alewife, and helped to develop a world-class 

recreational fishery in the Great Lakes (Tanner and Tody 2002, Emery 1985, Mills et al. 1994). 
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Chinook salmon are now a critical component of the multi-billion dollar fishery in the Great 

Lakes, which is enjoyed by over 9 million anglers each year (Hansen and Holey 2002, Tanner 

and Tody 2002, U.S. Department of the Interior 2006). 

 Chinook salmon were successfully introduced in both Lake Michigan and Lake Huron, 

although the lakes have experienced very different histories since these introductions. In Lake 

Michigan, stocking rates gradually increased through the 1970s and 1980s to a maximum of 

7.86 million smolts in 1989 (Lake Michigan Technical Committee, Salmonid Working Group 

(SWG), unpublished data). Harvest rates remained high until the late 1980s, when a bacterial 

kidney disease (BKD) epizootic resulted in sharp declines in survival (Holey et al. 1998, 

Madenjian et al. 2002). Stocking rates have since declined to 3.2 million smolts in 2012, while 

harvest increased following the BKD epizootic in the 1980s and 1990s (Lake Michigan Technical 

Committee, Salmonid Working Group (SWG), unpublished data). While Lake Huron has 

experienced similar patterns in stocking rate reductions (Grischke 2011), harvest has notably 

declined in large part due to the 2004 Lake Huron alewife collapse (Roseman and Riley 2007, 

Riley et al. 2008). This collapse was documented by Riley et al. (2008), who found that the 

abundance of many deepwater demersal fish had declined significantly since the 1980s and 

1990s, perhaps due in part to substantial predation from offshore fish predators such as 

Chinook salmon or lake trout (Johnson et al. 2005, Dobiesz et al. 2005, He et al. 2015), causing a 

destabilization of the lakes’ predator-prey balance (Stewart et al. 1981, Tsehaye et al. 2014a, 

Tsehaye et al. 2014b). The decline of alewife in Lake Huron led to a decrease in Chinook salmon 

catch rates, growth rates (Dobiesz et al. 2005, Roseman and Riley 2007), and survival (Brenden 

et al. 2012); the statistical catch-at-age assessment conducted by Brenden et al. (2012) 
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indicated that the most recent declines in predator abundance were associated with a decrease 

in the abundance of alewives. 

Chinook salmon populations were initially sustained via stocking, but naturally produced 

smolts have contributed to the lake wide populations since the early 1970s (Claramunt et al. 

2012). Since their introduction, the natural reproduction of Chinook salmon has steadily 

increased. Wild smolt production in Lake Michigan tributaries has been estimated from various 

analyses, including recaptures of adult Chinook salmon marked with oxytetracycline (OTC) and 

stream electrofishing surveys (Jonas et al. 2008, Carl 1982, Keller et al. 1990, Hesse 1994, ESR 

and DFC, unpublished data, RMC and J. Johnson, unpublished data). These analyses have shown 

an increase in the number of wild smolts contributing to the population in Lake Michigan (Jonas 

et al. 2008). Due to increasing natural reproduction, in combination with stocking cuts, the 

proportion of wild fish in both lakes has increased. Williams (2012) used OTC analyses to 

determine the proportion of wild fish harvested in the Lake Michigan recreational fishery. He 

found that the fishery harvest consisted of approximately 53% to 70% wild fish among the four 

year classes between 2006 and 2009 (Williams 2012, Jonas et al. 2008). Johnson et al. (2010) 

also used OTC techniques to assess the contribution of wild fish to the Lake Huron fishery, and 

found that wild fish contributed greater than 80% to the harvest between 2000 and 2003. This 

variation in the contribution of wild fish to fishery harvest highlights yet another difference in 

Chinook salmon stocks between the Lake Michigan and Lake Huron basins. 

The production rates of natural recruits varies substantially within each basin as well, 

particularly among Lake Michigan tributaries (Carl 1982, Creque et al. 2005, Ed Rutherford, 

NOAA, personal communication). Electrofishing surveys conducted in Lake Michigan by state 
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agencies have revealed that the majority of wild Lake Michigan Chinook salmon originate from 

tributaries along the eastern shore of Lake Michigan. For example, it was estimated by Carl 

(1982) that natural recruits produced in eastern shore tributaries such as the Manistee, 

Muskegon, Pere Marquette, White, Platte, Jordan, and Boyne Rivers represented 23% of the 

total recruitment into the fishery, including hatchery plants, in the late 1970s, when hatchery 

plants contributed more to the total population than naturally produced smolts. It is to be 

expected that tributaries in the state of Michigan contribute a greater amount of smolts to the 

total population in Lake Michigan, as these streams exhibit a number of qualities that make 

them ideal spawning and rearing habitat for Chinook salmon, including cold temperatures, high 

river discharge rates, and the presence of coarse gravel substrate (Groot and Margolis 1991, 

Raleigh et al. 1986), whereas some of these qualities are lacking in other Lake Michigan 

streams. More recently, Rutherford developed a Geographic Information System (GIS) model to 

estimate the theoretical contribution of individual streams to the Chinook salmon fishery based 

on the stream habitat classification system of Seelbach et al. (1997) (Creque et al. 2005, Ed 

Rutherford, NOAA, personal communication). This GIS model translated several stream 

attributes into fish production categories to estimate wild smolt production for each tributary 

in Lake Michigan and Lake Huron (Creque et al. 2005). While these techniques can estimate the 

potential for wild smolt production among several Great Lake tributaries, the actual production 

of natural recruits from individual streams is unknown. 

 Smolts produced in the tributaries of Lake Michigan represent a substantial contribution 

to the fishery in Lake Michigan, but another potential source of recruits might be wild fish 

migrating from Lake Huron. Movement of hatchery-reared fish from Lake Huron to Lake 
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Michigan has been documented (Clark and Bence 2012, Johnson et al. 2005). Johnson et al. 

(2005) examined the movement of adult Chinook salmon between Lake Michigan and Lake 

Huron by comparing the recapture rates of adults that were tagged as juveniles with coded 

wire tags (CWT), and found that an increasing proportion of Lake Huron stocked fish captured 

in Lake Michigan waters in the 1990s and early 2000s. Clark and Bence (2012) hypothesized 

that Chinook salmon from Lake Huron may be migrating to Lake Michigan due to potentially 

greater foraging opportunities in Lake Michigan, particularly following the 2004 Lake Huron 

alewife collapse (Riley et al. 2008). The potential for movement was tested by comparing the 

recapture rates of tagged hatchery fish released at a Lake Michigan site (Medusa Creek) and a 

Lake Huron site (Swan River), both located within 50 miles of the Mackinaw Bridge. Based on 

the absolute number of recaptures, recapture rates of Lake Huron stocked fish in Lake Michigan 

increased from about 5% in 1994 to a maximum of approximately 80% in 2003. Since 2000, on 

average more than 50% of the recaptures of Lake Huron stocked fish were in Lake Michigan, 

while 2% or less of the recaptures of Lake Michigan stocked fish were in Lake Huron. The results 

suggest that a large number of stocked fish move from Lake Huron to Lake Michigan, while few 

move in the other direction (Clark and Bence 2012).  

Given this movement of hatchery fish to Lake Michigan from Lake Huron, it is likely that 

wild fish exhibit similar movement patterns. Indirect evidence indicates the potential for the 

inter-basin movement of wild Chinook salmon. Williams (2012) found that the percent wild fish 

in a cohort increased with age in Lake Michigan. For all cohorts, age-1 Chinook salmon averaged 

55% wild, and age-2 fish averaged 64% wild. Williams (2012) concluded that the most likely 

explanation for the increase in percent wild fish from age-1 to age-2 was wild Lake Huron fish 
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migrating to Lake Michigan after their first year. In addition, it has been observed that the Lake 

Huron Chinook salmon fishery has shifted from one that is year round to one in which fish are 

harvested mostly in the early spring and fall (Clark et al. 2016, Dave Gonder, OMNR, personal 

communication). These fish are apparently feeding elsewhere during the summer, some likely 

in Lake Michigan. In recent years, low estimated prey fish biomass in both lakes has caused the 

Lake Huron and Lake Michigan Technical Committees to place elevated priority on quantifying 

this movement. 

While the GIS model developed by Rutherford can be used to estimate smolt production 

of Great Lakes streams to the recruitment of the fishery (Creque et al. 2005; Seelbach et al. 

1997; Ed Rutherford, NOAA, personal communication), this approach does not take into 

account the potential differences in survival and movement once smolts reach the lake. A more 

definitive approach would be to apply marks to juveniles in each tributary and assess their 

relative contributions to the fishery by collecting them as adults. However, this would likely be 

costly and difficult. A potentially useful tool for differentiating juvenile stream sources of 

Chinook salmon is analysis of otolith microchemistry. Otolith microchemistry provides an 

alternative, natural tag that avoids these issues. Natural tags, or markers that occur naturally, 

provide benefits over traditional mark-recapture studies involving artificial tags, such as 

avoiding the need to physically tag fish and allowing each fish to count as marked (Thorrold et 

al. 2002). Genetic markers are a commonly used natural tag, and have been used to distinguish 

among source populations of salmon and various other species (Thorrold et al. 2002, Davies et 

al. 1999, Kordos and Burton 1993). Parasites provide another natural tag which can be used to 

determine if a fish has visited a particular environment by determining whether or not a fish is 
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infected by a particular species of parasite (MacKenzie and Abaunza 1998). Finally, 

environmental markers, such as developmental differences in size and growth, can be used to 

discriminate fish populations (Thorrold et al. 2002, Swearer et al. 1999). 

More recently, environmental markers such as geochemical signatures in otoliths have 

been used to discriminate source populations (Thorrold et al. 1998). Otoliths incorporate trace 

elements from the aquatic environment relative to their proportion in the water column, which 

have been found to vary considerably among individual streams and geographic regions. Trace 

element sources, and the resulting variation in otolith chemical signatures, are influenced by 

factors such as bedrock and surficial geology, atmospheric deposition, and anthropogenic 

impacts (Campana 1999, Campana and Thorrold 2001, Elsdon et al. 2008). This method makes 

use of the differences in otolith chemical signatures between sites at various scales, which are 

permanently and continually incorporated into the calcium carbonate structure (Campana 

1999, Campana and Thorrold 2001). 

While otolith microchemistry has historically been used to distinguish fish population 

sources, more recent work has indicated the potential for its use to quantify movement. For 

example, Hoover (2012) used otolith microchemistry to determine the inshore-offshore 

movement patterns of Atlantic croaker (Micropogonias undulatis) and black sea bass 

(Centropristis striata). While this study was mostly focused on the timing of movement, it also 

examined spatial differences in otolith microchemistry as a proxy for time, indicating that 

spatial differences in otolith microchemistry may be a means by which movement can be 

quantified. Multiple studies have concluded that otolith microchemistry has the potential to 
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quantify movement, particularly in the Great Lakes region (Pangle et al. 2010, Brazner et al. 

2004). 

Several studies have applied otolith microchemistry techniques in the Great Lakes on 

various species. For example, Pangle et al. (2010) used otolith microchemistry to determine 

differences in geographically distinct source populations of larval yellow perch (Perca 

flavescens) in Lake Erie. Other studies have used otolith microchemistry to examine chemical 

signatures unique to yellow perch from various spawning habitats in Lake Superior (Brazner et 

al. 2004), determine the stock structure of Lake Superior lake herring (Bronte et al. 1996), and 

identify the natal sources of invasive sea lamprey in the Great Lakes (using statoliths; Hand et 

al. 2008). 

Recent studies have also applied otolith microchemistry to salmonids in the Great Lakes. 

Watson (2016) used otolith microchemistry to differentiate wild sources of Lake Michigan 

steelhead, as well as to determine differences in chemical signatures between wild and 

hatchery fish. In Lake Huron, Marklevitz et al. (2011) found that otolith microchemistry could be 

used to discriminate juvenile Chinook salmon between rearing environments, collection sites, 

and geological regions. Following this work, Marklevitz et al. (2016) then used otolith 

microchemistry to test the assumption of a mixed stock fishery, concluding that stocks in Lake 

Huron were more heterogeneously mixed than previously thought. Given the success of this 

method on Lake Michigan steelhead and Lake Huron Chinook salmon, it is likely that otolith 

microchemistry can be used to successfully distinguish Chinook salmon harvested in Lake 

Michigan as well. 
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While these recent studies examined differences in otolith microchemistry among 

spatially distinct regions (Watson 2016, Marklevitz et al. 2011, Marklevitz et al. 2016), they did 

not examine the potential for the use of these microchemistry differences to quantify 

movement. Mark-recapture studies of hatchery fish have supplied us with movement estimates 

for stocked fish (Adlerstein et al. 2007, Adlerstein et al. 2008, Johnson et al. 2010), but the 

movement rates of wild Chinook salmon have yet to be quantified. A better understanding of 

the contribution of wild Lake Huron smolts to the Lake Michigan fishery could lead to more 

informed management decisions such as stocking rates and fishing regulations. 

 Juvenile natal river sources can be classified at a regional level (groups of streams) with 

up to 80-90% success (Watson 2016, Marklevitz et al. 2011, Marklevitz et al. 2016, Pangle et al. 

2010, Brazner et al. 2004). Given this success, it is likely that adult Chinook salmon can be 

correctly classified to their natal origins as well. However, there is the potential for otolith 

microchemistry to exhibit variation among years (Tanner et al. 2012), thereby complicating 

spatial classification. For example, Pangle et al. (2010) found that larval yellow perch could not 

successfully classify to their natal origins when using data from different years, indicating 

significant inter-annual variability in otolith microchemistry.  It is important to account for 

annual variation if a goal is to identify the source composition of adults from the open lake. For 

example, if inter-annual variability is found to exist, it may be necessary to match adults to the 

signatures of juveniles from the same cohort. 

 This research aims to quantify the movement of wild Lake Huron Chinook salmon to 

Lake Michigan. Our primary goal was to develop and test a model that can be used to 
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determine if there is movement of wild fish between Lake Michigan and Lake Huron. Assuming 

this movement is observed, future studies may quantify the magnitude of this movement.  

 Data were gathered over multiple years and study sites, allowing us to answer multiple 

questions related to our goals. Juveniles were collected in their natal streams to assess the 

differences in otolith microchemistry over multiple scales, and multiple years of data were 

collected to assess the potential for variability in otolith microchemistry between year classes. 

Adults were collected in the streams. Given that most Chinook salmon adults captured in a 

stream are returning to their natal stream (Quinn and Fresh 1984), this allowed us to examine 

the success of assigning known origin adult fish using juvenile data. Given the scope of our data, 

we used otolith microchemistry to examine three specific research objectives related to our 

primary research goal: 

(1) Develop a model to discriminate natal source by geographic regions for juvenile 

Chinook salmon within and between Lake Michigan and Lake Huron, as well as 

between wild and hatchery fish; 

(2) Determine the model’s capacity for quantifying movement by classifying adult fish of 

assumed known origin; 

(3) Determine the effect of year-class on discrimination by comparing the classification 

success of juvenile models between years, and by building single-cohort and 

multiple-cohort models. 

Based on previous literature, we hypothesized that (1) otolith microchemistry can be 

used to discriminate juvenile natal sources at multiple scales with a classification success 

comparable to previous otolith studies (upwards of 80%), (2) stream collected adults can be 
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classified to their natal sources based on juvenile data with moderate success, and (3) otoliths 

from juvenile fish of different year classes will have different chemical signatures, which will 

negatively affect classification accuracy when using one juvenile year class to classify the other. 
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METHODS 

 

Sample Collection 

  

 Wild juvenile Chinook salmon were collected between the months of April and August in 

2015 (n=223) and 2016 (n=143) (Table 1). Fish were collected with a model 12-B Smith-Root 

backpack electrofisher by Michigan State University, Central Michigan University, and Michigan 

Department of Natural Resources (MDNR) personnel. Wild adult Chinook salmon were 

collected in the tributaries during the months of October and November in 2015 and 2016. The 

majority (n=49 in 2015, n=42 in 2016) of adults were obtained as carcasses by Michigan State 

University personnel; their sagittal otoliths were extracted on site. Two samples were collected 

via angler volunteers in 2015. The remaining wild adult otoliths (n=16 in 2015, n=17 in 2016) 

were collected at the Swan River, Medusa Creek, Little Manistee River, and Boardman weirs by 

MDNR personnel and the Strawberry Creek weir by Wisconsin Department of Natural 

Resources (WDNR) personnel. The presence or absence of an adipose fin clip was recorded for 

each adult sample and used to distinguish between wild and hatchery-reared fish. The sagittal 

Table 1.—Summary of juvenile and adult fish collected and successfully analyzed from each 
region in 2015 and 2016. 

Region 
Number 

Region 
Code Region Description 

2015 
Juveniles 

2015 
Adults 

2016 
Juveniles 

2016 
Adults 

1 UPP Upper Peninsula (MI) 10 2 17 0 
2 NLP Northern Lower Peninsula (MI) 63 32 65 34 
3 SLP Southern Lower Peninsula (MI) 81 7 44 8 
4 WIS Wisconsin 48 12 0 10 
5 NLH Northern Lake Huron (ONT) 0 0 13 0 
6 SGB Southern Georgian Bay (ONT) 21 14 4 7 

  Total 223 67 143 59 
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otoliths of all juvenile fish and the angler-collected adult fish were extracted at Michigan State 

University. All otoliths were cleaned of adhered tissue and left to dry in microcentrifuge vials 

(juveniles) or sample envelopes (adults). 

 Sampling occurred within the streams of 6 pre-selected regions in the Lake Michigan 

and Lake Huron basins, which were selected based on surficial and bedrock geology and 

evidence of previous spawning (Marklevitz et al. 2011). Within each region, 3-12 collection sites 

were sampled to help obtain a sufficient sample size for analysis (Table 2, Figure 1). The regions 

were: Upper Peninsula (UPP), Northern Lower Peninsula (NLP), Southern Lower Peninsula (SLP), 

Wisconsin (WIS), Northern Lake Huron (NLH), and Southern Georgian Bay (SGB). 

Table 2.—Summary of streams where fish were collected in 2015 and 2016 within each 
region of collection. All numbers correspond to the locations in Figure 1. Note: Un-
Named Creek is a tributary in the St. Joseph watershed that did not have a name. 

Region of 
Collection Stream  

Lake 
Michigan 
   UPP 

 
 
(1) Days River, MI 

 
 
(2) Eighteen Mile Creek, MI 

   NLP (3) Boyne River, MI (4) Kids Creek, MI 
 (5) Little Betsie Creek, MI (6) Little Manistee River, MI 
 (7) Little South Branch- Pere 

Marquette, MI 
(8) Middle Branch- Pere 
Marquette, MI 

 (9) Pine Creek, MI (10) Platte River, MI 
 (11) Weldon Creek, MI  
   SLP (12) Bigelow Creek, MI (13) Muskegon River, MI 
 (14) Prairie Creek, MI (15) Silver Creek, MI 
 (16) Un-Named Creek, MI*  
   WIS (17) Casco Creek, WIS (18) Hibbards Creek, WIS 
 (19) Kewaunee River, WIS (20) Sauk Creek, WIS 
Lake 
Huron 
   NLH 

 
 
(1) Manitou River, ON 

 

   SGB (2) Bighead River, ON (3) Silver Creek, ON 
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Figure 1.—Summary of streams in which fish were collected in 2015 and 2016. Numbers 
correspond to the names of streams in Lake Michigan (solid circles with transparent text) and 
Lake Huron (open circles with black text) in Table 2. 

 
Otolith Analysis 

 

 Otoliths were sectioned and polished at Michigan State University. For each fish, an 

otolith was randomly sampled (left or right) for analysis. Otoliths that were cracked, broken, or 

contained vaterite deposits were excluded from analysis; it has been observed that vaterite 

calcium carbonate structures incorporate elements differently than the aragonite structures 

typical of otoliths (Melancon et al. 2005, Melancon et al. 2008). Otoliths were embedded in 

hard-setting EpoFix epoxy resin. The embedded otoliths were sectioned using an Allied isomet 
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saw by cutting 1mm sections along the transverse plane where the dorsal-ventral width was 

widest. Otoliths were ground to the core to expose the primordia using 3M lapping film with 5 

µm and 3 µm grit sizes. Further fine polishing was accomplished using 1 µm and 0.3 µm alumina 

slurries. 

 Otoliths were analyzed for their microchemistry using a laser-ablation inductively-

coupled plasma mass spectrometer (LA ICP MS) at the Center for Elemental and Isotopic 

Analysis (CELISA) at Central Michigan University (Mt. Pleasant, MI). A Photon Analyte 193 nm 

Excimer laser was used to ablate each otolith along the posterior-anterior section across the 

core; this was done to ensure that transects were standardized and variability was minimized 

(Campana 1992). Surface contaminants were removed prior to LA ICP MS analysis using an 80 

µm square spot with a repetition rate of 2 Hz. Otoliths were analyzed using a 40 µm diameter 

spot size, a repetition rate of 10 Hz, and speeds at 2 µm s-1 for juvenile samples and 2-4 µm s-1 

for adult samples. Ablated material was carried via argon gas to a Thermo-Finnigan Element 2 

ICP MS. 

 Nine elements were measured: magnesium (25Mg), calcium (43Ca), manganese (55Mn), 

copper (65Cu), zinc (66Zn), rubidium (85Rb), strontium (88Sr), barium (137Ba), and lead (208Pb). 

Background microchemistry signatures were accounted for by analyzing a 40s gas blank prior to 

laser ablation. Limits of detection were set using NIST 612 and NIST 610 glass standards and a 

MACS 3 pressed pellet standard. NIST 612 standards were also analyzed between every 3-8 

otoliths to account for instrument drift. Due to their values being below the limits of detection, 

both copper and lead were removed from the data set. Raw counts-per-second data were post-

processed at Central Michigan University to obtain elemental concentrations in parts per 
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million (ppm). Variation in the volume of ablated material was accounted for by standardizing 

microchemical concentrations to measured Ca in the otolith (Watson 2017, Marklevitz et al. 

2016, Marklevitz et al. 2011, Pangle et al. 2010). The data were then further processed to 

convert ppm values to molar ratios of Ca within the otolith using the following formula: 

𝐶𝑀𝑅 = 𝐶𝑃𝑃𝑀 ∗ (
1

𝑀𝑊𝑋
÷

0.4

𝑀𝑊𝐶𝑎
) 

where CMR is the concentration as a molar ratio to Ca, CPPM is the concentration in parts per 

million, MWX is the molar weight of a particular element, and MWCa is the molar weight of 

calcium. Ca concentrations within the otolith were assumed to be fixed to account for variation 

in the amount of ablated material (Marklevitz et al. 2016). 

 A transect was run from the posterior edge to the anterior edge across the core for the 

juvenile otoliths. Peaks in manganese concentrations were observed at the primordia during LA 

ICP MS analysis, and were used to identify the primordia when examining the post-processed 

data. Microchemical signatures within 100 µm of the primordia were excluded; this was the 

distance for each otolith at which the switch to exogenous feeding was assumed to have 

occurred (Zhang et al. 1995). Signatures 20 µm from the transect edge were excluded to 

account for contamination issues arising during sectioning and polishing. A mean of the 

remaining signatures was taken from the posterior side of the otolith and used for all further 

analyses. 

For the adult otoliths, a transect was run from the posterior side to the anterior side 

across the core starting and ending at the first annulus. Following ablation, transects of varying 

distances set 100 µm from the primordia on the posterior side of the otolith (in 20 µm 

increments) were tested to see which transect length resulted in the highest classification 
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accuracy (see “Model Selection”) when applying the 2015 juvenile model to the 2015 adult data 

(see “Model Application”). A 400 µm transect was selected for all further analyses, and was 

used for all model applications to standardize comparisons. 

 

Model Selection 

 

 Several methods (hereby referred to as “classification models”) have been proposed for 

the assignment of fish to their natal origin using otolith microchemistry. As described by 

Mercier et al. (2011), these classification models are: linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA), artificial neural networks (ANN), and random forests 

(RF). LDA and QDA have been frequently used for otolith microchemistry classification in prior 

studies (Pangle et al. 2010, Gillanders & Kingsford 2000). More recently, machine learning 

algorithms such as ANN and RF have also been successfully applied (Marklevitz et al. 2016, 

Marklevitz et al. 2011, Mercier et al. 2011). 

 Classification accuracy (i.e., the percentage of observations correctly classified to their 

natal region) was evaluated for each proposed classification model and each combination of 

elements using each year of juvenile data and combined data set consisting of all samples from 

both years; a total of 63 possible element combinations were evaluated using the six elements 

in the final data set: magnesium (25Mg), manganese (55Mn), zinc (66Zn), rubidium (85Rb), 

strontium (88Sr), and barium (137Ba). MANOVAs using the Wilk’s lambda test statistic were used 

to confirm differences in otolith microchemical signatures among all elements for each year of 
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juvenile data at α = 0.05. Principal components analysis (PCA) was also used to illustrate 

patterns in the data for both the 2015 and 2016 juveniles using all elements. 

 Due to difficulties in comparing the performance of classic statistical classification 

models together with machine learning algorithms, a method described by Mercier et al. (2011) 

was used to evaluate classification accuracy, in which the juvenile data sets were randomly 

sampled to obtain training and testing data sets. The training data sets comprised 75% of the 

data, and the remaining 25% formed the testing data set. This cross-validation procedure was 

used to avoid issues associated with using the same data to fit and test the classification models 

(Mercier et al. 2011, Kohavi 1995). Fifty replicates were run for each model and each 

combination of elements, resampling the training and testing data set each time to avoid a 

sampling effect (Mercier et al. 2011). Mean classification accuracies and their associated 95% 

confidence intervals were obtained for each model, and the best combination of variables for 

each classification model was evaluated based on the maximum classification accuracy. 

Classification accuracy was evaluated on the regional scale previously mentioned, as well as on 

a scale (referred to as “basin-wide”) in which fish were divided into two groups (Lake Michigan 

and Lake Huron). While broad, this alternative scale was considered because the scope of this 

project focuses on basin-wide implications. For each juvenile data set (2015 samples, 2016 

samples, and all samples), due to similarities among models in performance on a basin-wide 

scale, the models with the greatest classification accuracy on a regional scale were selected for 

further analysis. 
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Adult Classification Success 

 

 The three selected models were used to evaluate the regional and basin-wide 

classification accuracy for each year of adult data and a combined data set consisting of all 

adult samples from both years (a total of 9 model applications). Because of discrepancies in the 

regions in which fish were collected, classification accuracy was only evaluated for the regions 

in which samples were present in both the juvenile data used to fit to the model being tested 

and the adult data used to evaluate the model. To account for stochasticity associated with 

machine learning classification algorithms, fifty replicates were run for each application of the 

models. Classification tables were retained for each application to evaluate the sources of 

misclassification. Median values across replicates for each classification scenario were 

obtained. 

 

Annual Otolith Microchemistry Variation 

 

 Inter-annual otolith microchemical variation was evaluated by performing MANOVAs to 

test for the differences in mean otolith microchemical signatures between 2015 and 2016 

juveniles for each region in which fish were present in both years (UPP, NLP, SLP, SGB). Then, 

for each region in which the MANOVAs indicated significant inter-annual differences in otolith 

microchemistry, the effect of inter-annual otolith microchemistry variation on classification 

success was evaluated by using models fit to each year of juvenile data to classify fish from the 

other year. This was then compared to the within-year classification accuracy, which was 
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determined within the random forest algorithm. Error estimates were generated for each tree 

within the forest by assigning samples excluded from the model fit. The individual error 

estimates were then averaged across all trees to obtain an overall error estimate, and this value 

was subtracted from 100 to determine the within-year classification accuracy. Fifty random 

forest algorithms were run and evaluated for both the 2015 and 2016 juveniles, and mean 

classification accuracy and 95% confidence intervals were obtained. Independent two-sample t-

tests assuming unequal variances were performed to test the null hypothesis of no difference in 

classification accuracy within and among year classes at α = 0.05. 
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RESULTS 

 

Model Selection 

 

 MANOVA results indicated significant differences in otolith chemical signatures of 

juvenile Chinook salmon among regions for both the 2015 (Wilk’s lambda = 0.597, p < 0.001) 

and 2016 (Wilk’s lambda = 0.782, p < 0.001) data sets. PCA illustrates patterns in the variables, 

with the first two principal components explaining greater than 91% of the variation in 2015 

(Figure 2) and 94% of variation in 2016 (Figure 3). Principal component loadings for each PCA 

analysis are depicted in Table 3; for both analyses, the first principal component was highly 

positively correlated with Mg, and the second principal component was highly positively 

correlated with Sr. 

Table 3.—Component loadings for the 2015 and 2016 PCA analyses.  

 2015 PCA 2016 PCA 
Element PCA 1 PCA 2 PCA 1 PCA 2 

Mg 0.972 0.225 0.999 -0.003 
Mn 0.113 0.027 0.116 0.023 
Zn 0.340 0.201 -0.255 0.158 
Rb -0.088 0.211 0.099 -0.026 
Sr -0.483 0.875 0.052 0.994 
Ba -0.041 0.514 0.020 0.160 
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Figure 2.—Results of a principal components analysis (PCA) conducted on the 2015 juvenile 
data set, showing the first two principal components. Regions represented are UPP (open 
cirlces), NLP (open triangles), SLP (open squares), WIS (crosses), and SGB (closed squares).  
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Figure 3.—Results of a principal components analysis (PCA) conducted on the 2016 juvenile 
data set, showing the first two principal components. Regions represented are UPP (open 
circles), NLP (open triangles), SLP (open squares), NLH (closed circles), and SGB (closed 
squares). 

 
 Classification accuracy varied depending on the combination of elements, classification 

model, and the years of data that were used to fit the model (Figure 4, Table 4). For 2015 

juveniles, maximum classification accuracies on a regional scale ranged from 58.6% to 81.4% for 

all classification models. Regional accuracies were maximized with a combination of 3 or 5 

elements depending on the classification model. On a basin-wide scale, maximum classification 

accuracies ranged from 92.1% to 98.3% for all classification models. Basin-wide accuracies were 

maximized with a combination of 2 or 4 elements. For the 2016 juvenile data, maximum 

classification accuracies  
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Figure 4.—Maximum classification accuracy for classification models including 1 to 6 
elements, based on 2015 data at regional (a) and basin-wide (b) scales, 2016 juvenile data at 
regional (c) and basin-wide (d) scales, and both years of juvenile data at regional (e) and 
basin-wide (f) scales. The classification models used were linear discriminant analysis (LDA), 
quadratic discriminant analysis (QDA), artificial neural networks (ANN), and random forests 
(RF). 
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on a regional scale ranged from 50.8% to 76.1% for all classification models. Classification 

accuracies on a regional scale maximized with a combination of 3 to 5 elements. Maximum 

classification accuracies on a basin-wide scale ranged from 85.3% to 90.1%, and accuracies 

were maximized with a combination of 4 or 5 elements. For the combined juvenile data set, 

maximum classification accuracies on a regional scale ranged from 55.6% to 75.8% for all 

classification models. Classification accuracies on a regional scale maximized with a 

combination of 4 to 6 elements. Maximum classification accuracies on a basin-wide scale 

Table 4.—Maximum classification accuracy and 95% confidence intervals, and the number 
and combination of elements resulting in the most accurate model for each classification 
method, scale, and selection of juvenile data. 

Data 
Fit Scale Method 

Maximal 
Accuracy (%) 

Number of 
Elements Element Combination 

2015 Regional LDA 76.5 ± 1.5 5 Mg, Mn, Rb, Sr, Ba 
  QDA 76.8 ± 1.7 5 Mg, Mn, Rb, Sr, Ba 
  ANN 58.6 ± 1.9 3 Mn, Rb, Ba 
  RF 81.4 ± 1.3 5 Mg, Mn, Rb, Sr, Ba 

 Basin-Wide LDA 96.3 ± 0.7 4 Mg, Mn, Sr, Ba 
  QDA 98.0 ± 0.5 2 Sr, Ba 
  ANN 92.1 ± 1.1 4 Mn, Rb, Sr, Ba 
  RF 98.3 ± 0.5 4 Mn, Zn, Sr, Ba 

2016 Regional LDA 71.9 ± 1.8 4 Mn, Zn, Sr, Ba 
  QDA 71.2 ± 2.3 4 Mn, Zn, Sr, Ba 
  ANN 50.8 ± 2.1 3 Mn, Rb, Ba 
  RF 76.1 ± 2.1 5 Mn, Zn, Rb, Sr, Ba 

 Basin-Wide LDA 90.1 ± 1.5 4 Mg, Rb, Sr, Ba 
  QDA 85.3 ± 1.7 4 Mn, Zn, Sr, Ba 
  ANN 87.8 ± 1.1 4 Mn, Zn, Rb, Sr 
  RF 89.7 ± 1.2 5 Mn, Zn, Rb, Sr, Ba 

2015 Regional LDA 68.4 ± 1.2 6 Mg, Mn, Zn, Rb, Sr, Ba 
+  QDA 69.2 ± 1.4 5 Mg, Mn, Zn, Sr, Ba 
2016  ANN 55.6 ± 3.1 4 Zn, Rb, Sr, Ba 
  RF 75.8 ± 1.2 6 Mg, Mn, Zn, Rb, Sr, Ba 

 Basin-Wide LDA 93.0 ± 0.6 3 Rb, Sr, Ba 
  QDA 93.5 ± 0.6 2 Sr, Ba 
  ANN 91.4 ± 0.8 2 Sr, Ba 
  RF 94.7 ± 0.6 5 Mg, Mn, Rb, Sr, Ba 
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ranged from 91.4% to 91.7%, and accuracies were maximized with a combination of 2 to 5 

elements. (Figure 4, Table 4). 

 For 2015 juvenile data, classification accuracies were maximized through the use of RF 

on a regional scale. Maximum classification accuracies for a combination of 2 or more elements 

were achieved using RF. On a basin-wide scale, all methods performed with a classification 

accuracy greater than 90%, with QDA and RF performing the most optimally. Using the 2016 

juvenile data, classification accuracies were maximized through the use of LDA or RF on a 

regional scale. Maximum classification accuracies for a combination of 3 or more elements 

were obtained using RF. The use of LDA resulted in the best classification accuracy on a basin-

wide scale using a combination of 4 elements; the use of RF at this scale resulted in greater 

maximum classification accuracies using combinations of 5 or 6 elements (Figure 4, Table 4). 

For the combined juvenile data set, classification accuracies were maximized by RF on a 

regional scale. The use of RF also resulted in the best classification accuracy on a basin-wide 

scale using a combination of 5 elements. 

 The element combinations that achieved maximum accuracy for each model varied 

depending on the classification model, scale, and the years of data fit to the model (Table 4). 

For 2015 juveniles, the optimal element combination on a regional scale consisted of either a 

combination of Mn, Rb, and Ba (ANN) or the entire suite of elements with the exclusion of Zn 

(LDA, QDA, RF). On a basin-wide scale, the optimal element combinations varied substantially 

among all classification methods. Ba was the only element present in all optimal element 

combinations using the 2015 juvenile data. Using the 2016 data, the optimal element 

combinations on a regional scale consisted of Mg, Zn, Sr, and Ba (LDA, QDA), Mn, Rb, and Ba 
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(ANN), or all elements with the exclusion of Mg (RF). On a basin-wide scale, the optimal 

element combinations varied substantially. No elements were consistent in any of the optimal 

element combinations using the 2016 juvenile data (Table 4). For the combined juvenile data 

set, the optimal element combination consisted of the entire suite of elements with the 

exclusion of Mg and Mn (ANN), the entire suite of elements with the exclusion of Rb (QDA), or 

the entire suite of elements (LDA, RF) on a regional scale. On a basin-wide, the optimal element 

combinations consisted of Sr and Ba (QDA, ANN), Rb, Sr, and Ba (LDA), or the entire suit of 

elements with the exclusion of Zn (RF). The juvenile models selected for further analysis were a 

RF using a combination of all elements with the exclusion of Zn fit to the 2015 juvenile data 

(hereby referred to as the “2015 model”), a RF using a combination of all elements with the 

exclusion of Mg fit to the 2016 juvenile data (hereby referred to as the “2016 model”), and a RF 

using a combination of all elements fit to the combined juvenile data set (hereby referred to as 

the “Combined model”). 

 

Adult Classification Success 

 

 Application of the juvenile models to adult data resulted in classification accuracies that 

varied depending on the juvenile model used and adult data that were classified (Table 5). 

Applying the three selected models to each selection of adult data resulted in regional 

classification accuracies ranging from 31.9% to 51.0% and basin-wide classification accuracies 

ranging from 74.2% to 87.8%. The maximum regional classification accuracy resulted from the 
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application of the 2015 model to 2015 adult data, and the maximum basin-wide accuracy was 

obtained by applying the 2016 model to 2016 adult data (Table 5). 

 Examination of the sources of misclassification from application of juvenile models to 

adult data reveal several patterns (Table 6). On a regional scale, the most common source of 

misclassification occurs due to adults from NLP being classified into the SLP region; this 

accounts for between 13% and 54% of the total misclassification across all scenarios. On a 

basin-wide scale, the most common source of misclassification occurs due to Lake Huron fish 

being classified into the Lake Michigan group; this accounts for between 6% and 17% of the 

total misclassification across all scenarios. 

Table 5.—Classification accuracies and 95% confidence intervals for each 
application of the juvenile models to the adult data on regional and basin-
wide scales. 

Model Adults Classified Scale 
Classification accuracy 
(%) 

2015 2015 Regional 51.0 ± 0.4 
  Basin-Wide 80.5 ± 0.2 

 2016 Regional 39.2 ± 0.6 
  Basin-Wide 74.2 ± 0.3 

 2015 + 2016 Regional 42.1 ± 0.6 
  Basin-Wide 77.8 ± 0.1 

2016 2015 Regional 40.5 ± 0.4 
  Basin-Wide 82.4 ± 0.4 

 2016 Regional 31.9 ± 0.3 
  Basin-Wide 87.8 ± <0.1 

 2015 + 2016 Regional 35.6 ± 0.3 
  Basin-Wide 83.8 ± 0.2 

Combined 2015 Regional 39.8 ± 0.3 
  Basin-Wide 82.2 ± 0.1 

 2016 Regional 34.2 ± 0.3 
  Basin-Wide 78.0 ± 0.1 

 2015 + 2016 Regional 36.5 ± 0.2 
  Basin-Wide 80.7 ± 0.1 
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Table 6.—Classification tables showing each application of the 2015 and 
2016 models to the 2015 and 2016 adult data. Rows represent actual 
group membership, while columns indicate predicted group membership; 
values along the diagonal (bold) indicate correct classifications. Values for 
each classification scenario represent the median value over 50 replicates 
(the number of adults classified is presented for each table). Regions in 
which fish were not present in either data set were excluded from 
analyses. 

Regional        Basin-Wide   

2015 Juveniles -> 2015 Adults 
Adults Classified = 67 

    

 UPP NLP SLP WIS SGB    LM LH 
UPP 0 1 1 0 0   LM 46 7 
NLP 1 20 9 0 2   LH 6 8 
SLP 0 0 7 0 0      
WIS 0 2 5 0 5      
SGB 0 0 6 0 8      

         
2015 Juveniles -> 2016 Adults 
Adults Classified = 59 

     

 NLP SLP WIS SGB     LM LH 
NLP 14 18 0 2    LM 41 11 
SLP 1 7 0 0    LH 4 3 
WIS 1 0 0 9       
SGB 1 3 0 3       

 
2015 Juveniles -> All Adults 
Adults Classified = 126 

      

 UPP NLP SLP WIS SGB    LM LH 
UPP 0 1 1 0 0   LM 87 18 
NLP 4 29 29 0 4   LH 10 11 
SLP 0 1 14 0 0      
WIS 0 2 5 0 14      
SGB 0 1 9 0 11      

 
2016 Juveniles -> 2015 Adults 
Adults Classified = 55 

      

 UPP NLP SLP SGB     LM LH 
UPP 0 0 2 0    LM 41 0 
NLP 0 11 21 0    LH 9 5 
SLP 0 0 7 0       

SGB 0 5 5 5       
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Table 6 (cont’d)       

2016 Juveniles -> 2016 Adults 
Adults Classified = 49 

      

 UPP NLP SLP      LM LH 
NLP 8 26 0     LM 42 0 
SLP 1 7 0     LH 6 1 

SGB 3 3 1        

 
2016 Juveniles -> All Adults 
Adults Classified = 104 

      

 UPP NLP SLP WIS     LM LH 
UPP 0 0 2 0    LM 83 0 
NLP 0 19 47 0    LH 17 4 
SLP 0 1 14 0       

SGB 1 8 8 4       

 
All Juveniles -> 2015 Adults 
Adults Classified = 67 

      

 UPP NLP SLP WIS SGB    LM LH 
UPP 0 1 1 0 0   LM 47 6 
NLP 1 12 17 0 2   LH 6 8 
SLP 0 0 7 0 0      
WIS 0 1 7 0 4      
SGB 0 0 6 0 8      

 
All Juveniles -> 2016 Adults 
Adults Classified = 59 

      

 NLP SLP WIS SGB     LM LH 
NLP 9 25 0 0    LM 43 9 
SLP 0 8 0 0    LH 4 3 
WIS 1 0 0 9       
SGB 1 3 0 3       

 
All Juveniles -> All Adults 
Adults Classified = 126 

      

 UPP NLP SLP WIS SGB    LM LH 
UPP 0 1 1 0 0   LM 90 15 
NLP 2 19 43 0 2   LH 9 12 
SLP 0 0 15 0 0      
WIS 0 2 7 0 13      
SGB 0 0 9 0 12      
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Annual Otolith Microchemistry Variation 

 

 MANOVAs indicated significant differences in otolith microchemical signatures between 

juvenile year classes in the UPP (Wilk’s lambda = 0.067, p < 0.001), NLP (Wilk’s lambda = 0.852, 

p < 0.01), and SLP (Wilk’s lambda = 0.873, p < 0.05) regions, and no significant differences in 

otolith chemical signatures in the SGB region (Wilk’s lambda = 0.626, p = 0.158). The inclusion 

of regions in which significant differences in otolith microchemistry were observed (UPP, NLP, 

SLP) to determine the effect of inter-annual variation on classification success resulted in higher 

classification accuracy when applying the models to data from the same year rather than data 

from the other year (Table 6). Because the regions included in this analysis were all in the Lake 

Michigan basin, classification accuracy could only be evaluated on a regional scale. Applying the 

2015 model resulted in a higher classification rate for 2015 juveniles (79.6%) than for 2016 

juveniles (56.3%). Similarly, the application of the 2016 model resulted in a higher classification 

rate for 2016 juveniles (84.3%) than for 2015 juveniles (61.1%). All results were significant at α= 

0.05 (Figure 5). 
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Figure 5.—Summary of the analyses of juvenile data to determine the effect of inter-annual 
otolith microchemistry variation on classification success. Mean classification accuracies are 
denoted by solid dots; due to the narrowness of the confidence intervals, error bars are not 
shown. Labels along the x-axis represent the model used to classify juveniles (2015 or 2016), 
and the year of juveniles that was tested (2015 or 2016). Significance between test years at 
α=0.05 is indicated by a star (*) at the top of the chart. Results are depicted on a regional 
scale, as only regions in the Lake Michigan basin were included in this analysis. 
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DISCUSSION 

 

Model Selection 

 

 Our analyses revealed that juvenile Chinook salmon otolith microchemistry varied 

significantly on regional and basin-wide scales. MANOVA results showed significant differences 

in otolith microchemistry among regions using all elements. In addition, the first two principal 

components of our PCAs explained over 90% of the variation in both 2015 and 2016, with Mg 

highly positively correlated with the first principal component and Sr highly positively 

correlated with the second principal component for both juvenile year classes. Regional 

classification accuracies using the top models were comparable to previous Great Lakes otolith 

studies (Marklevitz et al. 2011, Marklevitz et al. 2016, Pangle et al. 2010, Watson 2016). 

Classification accuracy was noticeably higher at a basin-wide scale; for the 2015, 2016, and 

combined data sets, classification accuracies were above 90%. 

 The top models from 2015, 2016, and the combined juvenile data sets all contained four 

common elements: Mn, Rb, Sr, and Ba, indicating that these four elements are likely the most 

important overall discriminators among regions. In particular, we expected that Sr and Ba were 

the key discriminators, as many of these elements were included in our best models, regardless 

of the classification model used. In addition, many previous otolith studies in the Great Lakes 

have indicated the importance of Sr and Ba in discriminating fish among regions and rearing 

environments (Marklevitz et al. 2011, Pangle et al. 2010, Watson 2016). 
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 While the three top models were the ones that resulted in the highest regional 

classification success of the test data, a number of other models performed similarly. On a 

regional scale, 13 models for 2015 juveniles, 13 models for 2016 juveniles, and 9 models for the 

combined juveniles had a classification accuracy within 5% of the top models. On a basin-wide 

scale, over 50 models tested for each juvenile data set exhibited a classification accuracy within 

5% of the selected models. We chose the models with the highest classification accuracy for 

further analysis because they resulted in the highest observed separation among groups. We 

assumed that the application of these models would also result in the highest classification 

accuracy for adult data. While this may not necessarily be the case, the similar performance of 

many of the tested models, particularly on a basin-wide scale, indicated that other models 

would have similar performance to the top models when applied to the adult data. 

 The maximum classification accuracy for the 2016 model was lower than the maximum 

classification accuracy for the 2015 model on both regional and basin-wide scales. There are a 

few possible reasons for the lower classification accuracy in 2016. First, classification accuracy 

may be lower due to differences in the numbers and locations of juvenile fish we collected in 

both years. We collected and successfully analyzed fewer fish in 2016 (143) than 2015 (223); 

fitting the model to fewer observations may have caused the classification accuracy to be lower 

for the 2016 data. In addition, we only analyzed four fish from the SGB region in 2016, which 

may have affected our results; when extracting the training and testing data sets, we fit the 

model to only one or two data points for some of the replicates, which likely resulted in a 

decline in classification accuracy. While we collected fish from streams within the same regions 



 
 

35 
 

in both years, the number of fish we collected at each site varied from year to year. This also 

has the potential to affect our results, and may have led to a lower classification success. 

 The maximum classification accuracy for the combined model was lower than the 

maximum classification accuracy of both the 2015 and 2016 models on a regional scale, 

whereas the maximum basin-wide classification accuracy was higher than that of the 2016 

model but lower than that of the 2015 model. The effect of combining years on classification 

success is difficult to predict because of the trade-off between increasing overall sample size, 

which we would expect to improve classification accuracy, and adding data from years in which 

the signatures may be different, which we would expect to have a negative effect on 

classification accuracy.   

 

Adult Classification Success 

 

 The application of the top juvenile models to the adult data resulted in lower 

classification accuracy than the accuracy in classifying the juvenile data. Classification on a 

regional scale was substantially lower for the adult data, with classification accuracies between 

31.9% and 51.0% across all applications. Classification accuracies on a basin-wide scale were 

also adversely affected, but remained above 74% for all applications of the juvenile models. 

Because this project focuses on movement at a basin level, we were able to conclude that the 

success of applying the top juvenile models to the adult data on a basin-wide scale indicates 

that these models have the potential to quantify Chinook salmon movement between Lake 

Michigan and Lake Huron.  
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 While misclassification patterns differed depending on the model used, common 

sources of misclassification emerged when examining the classification tables for each 

application of the juvenile models. The most common source of misclassification was NLP being 

misclassified as SLP fish. This is likely due to the close spatial proximity of the two regions; 

streams in these regions may have contained similar stream chemical signatures, and thus 

similar otolith chemical signatures. 

 There are several possible reasons for the reduced classification success of the adult 

otoliths. First, annual otolith microchemistry variation may have caused the classification 

accuracy to be lower. Adults that we classified did not match the year class of the juveniles, so 

it is possible that annual variation may have caused a decline in adult classification success. 

Second, a small number of adult Chinook salmon may spawn in a tributary different from the 

one in which they were reared, which is contrary to our assumption of 100% homing. While it is 

widely accepted that most Chinook salmon home to their natal streams to spawn, a small 

amount may stray to different rivers (Quinn and Fresh 1984). If a significant number of fish 

stray, this has the potential to negatively affect classification accuracy. Finally, the data that we 

selected for analysis from our adult otoliths may have affected classification accuracy. A 400 µm 

transect was selected for analysis from all adult otoliths, which we assumed represented the 

time each fish was exposed to stream chemistry in their first year of life. Transects of a fixed 

length were selected because of the difficulty we had in identifying differences between stream 

and lake chemical signatures. While a shift in Sr and Ba chemical signatures is often observed 

when examining species moving between marine and freshwater environments (Hoover 2012), 

we did not observe this shift in our freshwater system.  Due to our use of a fixed distance 
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transect, we were unable to account for variation in daily otolith growth rates among individual 

fish. A possible solution may be to standardize adult otolith transect lengths to the average 

juvenile transect lengths in each region, or to limit the variation in juvenile transect lengths by 

removing some of the longest or shortest samples. 

 

Annual Otolith Microchemistry Variation 

 

 Testing for differences in otolith microchemistry between juvenile year classes resulted 

in significant differences in three regions, indicating substantial inter-annual variation in otolith 

microchemistry. Using these regions to test the effects of inter-annual variation on 

classification success resulted in a significant drop in regional classification accuracy when 

classifying between juvenile year classes. These results indicated that inter-annual variation has 

a substantial negative effect on classification success, therefore potentially requiring the 

matching of juvenile and adult year classes. 

 Significant differences in otolith microchemical signatures were found for the UPP, NLP, 

and SLP regions, and significant differences were not found for the SGB region. This is most 

likely due to the small sample sizes in the SGB region for both years, particularly in 2016, when 

only 4 individuals were successfully analyzed. This likely affected the within year variation for 

the SGB region, and may have influenced the MANOVA results. 

 Significant differences were found when comparing classification accuracy by classifying 

within and between juvenile year classes at a regional scale. Classification accuracy was only 

compared at a regional scale due to only Lake Michigan regions being included in the analysis. It 
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is likely that inter-annual variation has a negative effect on classification accuracy at a basin-

wide scale as well, although we could not determine the magnitude of this effect. The results 

indicated that, even within the Lake Michigan basin, significant differences in otolith 

microchemical signatures negatively affects classification accuracy when classifying between 

year classes. 

 

Conclusions and Future Research 

 

 Otolith microchemistry appears to vary enough among regions to quantify the 

movement of wild Chinook salmon from Lake Huron to Lake Michigan. Juveniles discriminate 

with a high degree of success among regions and basins, showing that there is sufficient 

discrimination between regions for use on adult otoliths. The use of these models on adult data 

appears to be limited at a regional scale, at least when different year classes are involved, but 

adults classify with moderate success on a basin-wide scale. Lower classification accuracy of 

adults at regional and basin-wide scales may be due to annual variation in otolith chemical 

signatures, indicating the potential need to match juvenile and adult year classes.  

 Confidence in our classification models may have been affected by the limitations of our 

data. We did not collect as many samples as we had intended, particularly from the NLH region 

in Lake Huron. Based on the reduced amount of collections in these regions, it appears that 

wild Chinook salmon appear to be relatively uncommon in Lake Huron outside of the Southern 

Georgian Bay. Should Chinook salmon otolith studies continue in the future, regions in which 

few samples were collected should be targeted for additional samples. 
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 Future research involving the use of otolith microchemistry to examine Chinook salmon 

inter-basin movement should focus on examining and refining the models that were developed 

during this research. We recommend the examination of fishery caught wild Chinook salmon to 

determine the spatial and seasonal differences in the contribution of wild Lake Huron Chinook 

salmon to the Lake Michigan fishery. Due to our observation of annual otolith microchemistry 

variation, we also recommend the validation of a year class effect by analyzing the otoliths of 

adults collected in the streams in 2018 and 2019. By collecting and classifying adults that match 

the year classes of our juvenile data, we expect to see an improvement in classification 

accuracy. 

We expect these models will be used to calculate the movement of open-lake fish by 

classifying the otoliths of fish landed in the Lake Michigan recreational fishery. Further 

refinements of our models will likely lead to improved accuracy in the quantification of wild 

Chinook salmon movement from Lake Huron to Lake Michigan, and will result in more precise 

estimates of predatory demand due to this inter-basin movement. Ultimately, these models will 

allow us to assess the risks associated with a variety of Chinook salmon stocking alternatives. 

This research also indicates the potential for the use of otolith microchemistry to examine the 

movement of migratory fish species in freshwater environments. 
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